Problem A. 3

Prove that the components of a vector with respect to a given basis are unique.

Solution

Let there be a vector $|\alpha\rangle$ that has components with respect to a prescribed basis.

$$
|\alpha\rangle=a_{1}\left|e_{1}\right\rangle+a_{2}\left|e_{2}\right\rangle+\cdots+a_{n}\left|e_{n}\right\rangle
$$

Suppose the components of this vector with respect to the basis are not unique.

$$
|\alpha\rangle=b_{1}\left|e_{1}\right\rangle+b_{2}\left|e_{2}\right\rangle+\cdots+b_{n}\left|e_{n}\right\rangle
$$

Some of these components can be equal; the requirement is that there's at least one value of i for which $a_{i} \neq b_{i}$. Let i_{1} be one of these values. Subtract the respective sides of these equations.

$$
\mathbf{0}=\left(a_{1}-b_{1}\right)\left|e_{1}\right\rangle+\left(a_{2}-b_{2}\right)\left|e_{2}\right\rangle+\cdots+\left(a_{i_{1}}-b_{i_{1}}\right)\left|e_{i_{1}}\right\rangle+\cdots+\left(a_{n}-b_{n}\right)\left|e_{n}\right\rangle
$$

Bring the term with $\left|e_{i_{1}}\right\rangle$ to the left side.

$$
-\left(a_{i_{1}}-b_{i_{1}}\right)\left|e_{i_{1}}\right\rangle=\left(a_{1}-b_{1}\right)\left|e_{1}\right\rangle+\left(a_{2}-b_{2}\right)\left|e_{2}\right\rangle+\cdots+\left(a_{n}-b_{n}\right)\left|e_{n}\right\rangle
$$

Solve for $\left|e_{i_{1}}\right\rangle$.

$$
\left|e_{i_{1}}\right\rangle=-\frac{1}{a_{i_{1}}-b_{i_{1}}}\left[\left(a_{1}-b_{1}\right)\left|e_{1}\right\rangle+\left(a_{2}-b_{2}\right)\left|e_{2}\right\rangle+\cdots+\left(a_{n}-b_{n}\right)\left|e_{n}\right\rangle\right]
$$

Since one of the basis vectors can be expressed in terms of the others, the vectors are linearly dependent. This is a contradiction because the vectors that form a basis are linearly independent by definition. Therefore, the components of a vector with respect to a given basis are unique.

